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Abstract

We formulate the estimation of dense depth maps from
video sequences as a problem of intrinsic image estima-
tion. Our approach synergistically integrates the estimation
of multiple intrinsic images including depth, albedo, shad-
ing, optical flow, and surface contours. We build upon an
example-based framework for depth estimation that uses la-
bel transfer from a database of RGB and depth pairs. We
combine this with a method that extracts consistent albedo
and shading from video. In contrast to raw RGB values,
albedo and shading provide a richer, more physical, founda-
tion for depth transfer. Additionally we train a new contour
detector to predict surface boundaries from albedo, shad-
ing, and pixel values and use this to improve the estima-
tion of depth boundaries. We also integrate sparse structure
from motion with our method to improve the metric accu-
racy of the estimated depth maps. We evaluate our Intrin-
sic Depth method quantitatively by estimating depth from
videos in the NYU RGB-D and SUN3D datasets. We find
that combining the estimation of multiple intrinsic images
improves depth estimation relative to the baseline method.

1. Introduction

As laid out by Barrow and Tenenbaum [2] and elaborated
over the years, intrinsic images correspond to physical prop-
erties of the scene such as depth, reflectance, shadows, op-
tical flow, and surface shape. Barrow and Tenenbaum em-
phasize that the recovery of such intrinsic images is difficult
and that the solution should recover them together, exploit-
ing consistency between them. Here we take a step in that
direction. Given a video sequence, which may contain cam-
era motion and independently moving objects, we estimate
the following intrinsic images at each frame: depth, albedo,
shading, optical flow, and surface contours. As predicted by
Barrow and Tenenbaum, we find that these different intrin-

sic images provide complimentary information and that es-
timating them in a synergistic way improves our estimation
of scene structure. In doing so, we combine several lines
of work including example-based depth estimation, sparse
structure from motion, optical flow, contour detection, and
reflectance and shading analysis. We refer to our method as
Intrinsic Depth estimation (Fig. 1).

There have been recent successes in directly inferring the
depth structure of images and video sequences from pixel
values. In particular, our method builds on the framework
of Depth Transfer [12], which is a non-parametric, data-
driven, method for estimating scene depth using a database
of images (or videos) and corresponding depth images.
Given a new query image Depth Transfer has several steps.
First it finds similar images in a database using gist match-
ing [22]; the gist features are computed from image pixels
and optical flow. It then uses label transfer [18] between
the query image and the matched images to create a set
of possible depth values for the scene. A final stage per-
forms spatio-temporal regularization in an MRF formula-
tion. Given sufficient training data, the method performs
well at extracting plausible, dense, 3D surface structure.
The output is neither metrically accurate nor faithful to the
object boundaries in the scene. Here, however, we show
that we can do better by integrating depth estimation with
the extraction of other intrinsic images.

Gist features computed from pixel values may include
confounding effects of illumination and reflectance. By
mixing together reflectance, illumination, motion, and sur-
face shape, pixel values obscure the physical processes that
give rise to them. If the database contains very similar im-
ages (as it does in [12]) good matches will be found. A
query image, however, may look very different due to dif-
ferent illumination and having a database that covers all re-
flectance and illumination conditions may be prohibitive to
construct. Consequently we hypothesize that albedo and
shading, instead of RGB values, provide a more physically
motivated foundation for depth transfer. To that end, we use
the Intrinsic Video method [13], which extracts temporally
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Figure 1. Intrinsic Depth. (a) Input video. (b),(c) Albedo and
shading estimated by the intrinsic video method [13]. (d) Surface
contours from [8] modified to combine RGB, albedo and shad-
ing information. (e) Proxy depth by propagating sparse SfM [28]
depth using video segments from [9]. (f) Depth estimated by our
method, which combines the previous two methods. (g) Depth
from the original Depth Transfer method [12]. (h) Depth from
the fully-metric method [32]. (i) Depth from the example-based
single image method [24, 25]. (j) Ground truth depth. Note that
integrating information from different intrinsic images improves
the estimation of the depth structure. In (e) and (j), black pixels
indicate that no valid depth values are provided.

coherent albedo and shading from a video sequence by ex-
ploiting optical flow (Fig. 1(b,c)). We then use the estimated
albedo and shading to compute gist features separately on
albedo, shading, RGB, and flow and use these features for
generating candidate image matches.

We use albedo and shading in another way as well.
Depth Transfer uses spatial regularization and ideally such
smoothing should be disabled at surface boundaries. It is
well known that edges in images are a poor proxy for sur-
face boundaries because they combine surface markings
with shape and illumination. Again we hypothesize that
albedo and shading can provide important information to
help disambiguate what are surface markings and what are
object boundaries. In particular, surface boundaries in the
depth map are likely to correspond to discontinuities in the
shading images. However, shading edges are affected by
illumination, thus simply relying on shading alone is insuf-
ficient. Consequently we train a new contour detector using
RGB values, shading, and albedo to predict contours at sur-
face boundaries. We use the decision forest method in [8]
and train it on the synthetic 3D Sintel database [5] in which
surface boundaries are known. We modify Sintel to create a
training set with ground truth albedo and shading by simpli-
fying the lighting conditions and making all surface mate-
rials Lambertian. We find that the resulting detector makes
better predictions about surface boundaries (Fig. 1(d)) and
we use these in regularizing our depth estimates.

Better scene matching and better surface contour detec-
tion improve depth estimation compared with Depth Trans-
fer. We improve metric accuracy as well by integrating
structure from motion estimation (SfM) [28] into the frame-
work. SfM computes camera poses and sparse 3D points
that are metrically accurate but that need to be densified
to become an intrinsic “image.” Many methods have been
used for densification, but here we integrate sparse matches
within our Intrinsic Depth framework. We first obtain semi-
dense proxy depth maps by computing segmentation vol-
umes from [9] and estimating the depth of each segment
from the depth of the sparse 3D points projected into the
image (Fig. 1(e)). We then use these proxy maps as priors
in estimating our depth, replacing the use of average depth
data in [12].

We find that these changes produce markedly more re-
alistic depth maps with more precise depth boundaries
and better metric accuracy (Fig. 1(f,g)). By combining
Depth Transfer with intrinsic image decomposition, Intrin-
sic Depth makes a step towards an integrated treatment of
intrinsic image extraction.

2. Previous Work
Depth estimation from image cues. The estimation

of depth from a single image may use many well-studied
cues such as texture gradients, atmospheric effects, vanish-



ing points, etc. Progress has accelerated due to the recent
availability of training data with depth sensors and corre-
sponding color imagery.

One class of approaches learns a probabilistic model
from training data and poses the estimation problem as in-
ference. Saxena et al. [24, 25] predict depth from monocu-
lar image features using an MRF. A more efficient learning
strategy for this approach is proposed in [3]. Performance
improves by incorporating semantic labels [16] and even
more by jointly inferring depth and other cues such as seg-
mentation, scene category, saliency, etc. [15].

Example-based methods assume that appearance and
depth are correlated. Hassner and Basri [10] combine
known depth values of patches from similar objects to pro-
duce a plausible depth estimate of a query image of a single
object. Konrad et al. [14] extend this idea to deal with the
whole scene by simply fusing candidate depth maps. The
spirit of the Depth Transfer method in [12] is similar, but it
combines the candidate depth maps on a per-pixel basis us-
ing label transfer [18] by warping every pixel based on SIFT
flow [18]. In addition, their method is not limited to single
images, but rather exploits temporal information to obtain
temporally coherent depth estimates. While Depth Transfer
gives impressive results, the resulting depth maps are blurry
and do not precisely correspond to the scene structure.

Most recently, Liu et al. [19] train a method to estimate
depth from one image using a combination of a convo-
lutional neural network (CNN) and a conditional random
field. Their results look very natural and suggest that the
CNN features are useful for this task. If perceptual quality
is more desirable than metric accuracy, estimated depth can
be transformed as in [7].

Structure from motion. There is a long history of work
on structure from motion estimation (SfM). Very briefly, if
the video involves a static scene with sufficient camera mo-
tion, current SfM methods work well (e.g. [21, 32]). While
there are solutions for dealing with independently moving
objects (e.g. [31]) this case remains a challenge. Karsch et
al. [12] compare their method with [32] and demonstrate
that, as expected, [32] works only for videos with sufficient
parallax, while [12] produces results for any video regard-
less of the camera motion or object motion. The results of
[12], however, are of much lower fidelity.

Intrinsic image estimation. The idea of extracting
image-registered “intrinsic images” dates back to Barrow
and Tenenbaum [2]. Recently this term has been taken to
mean only “albedo” and “shading” but more generally in-
cludes the estimation of physically relevant properties such
as depth, normals, optical flow, surface boundaries, etc.

Most recent work has focused on estimating albedo and
shading from a single image. The most successful recent
approaches require additional depth information, e.g. from
an RGB-D sensor [1, 6, 11]. These methods essentially

use depth to estimate shading and albedo while our method
takes the opposite approach; that is, we start by estimat-
ing albedo and shading and then use this to estimate depth.
Note that our method does not require an RGB-D sensor at
test time, though we use RGB-D data for training as in other
depth transfer approaches.

Recent work has addressed the problem of intrinsic im-
age estimation in video sequences by exploiting temporal
information to reduce the uncertainty of the problem. Kong
et al. [13] exploit motion to extract temporally coherent
albedo and shading. Ye et al. [30] use optical flow to prop-
agate an initial albedo decomposition of the first frame over
the video sequence. Bonneel et al. [4] separate image gra-
dients into albedo and shading gradients based on scribbles
provided by the user, and propagate the strokes to subse-
quent frames using optical flow. We used the method in [13]
since this method is fully automatic and generates shading
that is piecewise smooth while well capturing overall sur-
face structure.

3. Formulation

Given a new query video, our goal is to estimate a dense
depth map at every frame. We briefly summarize the origi-
nal Depth Transfer method [12] and overview our modifica-
tions. While the original method can deal with both single
images and videos, our method focuses only on videos with
camera motion, possibly including moving objects. There-
fore we only describe the video-based procedures here.

Overview. The system initially obtains similar looking
video frames in the database by matching a set of gist de-
scriptors of the query video to every video clip in a database.
We find that better candidates are selected if each descriptor
is further decomposed into albedo gist and shading gist.

Next, the system warps the stored depth maps associ-
ated with the candidate frames onto each frame of the query
video using SIFT flow [18].

The final step enhances the warped depth maps using im-
age boundaries and optical flow. We replace image bound-
aries with surface contours predicted using pixel RGB,
albedo and shading. In addition, we use sparse points and
camera poses from structure from motion estimation [28] in
regularizing the estimated depth.

3.1. Exacting intrinsic images

Intrinsic video for database and input. Our database is
composed of RGB-D sequences and their corresponding es-
timated albedo, shading, and optical flow. We create this
using time-varying raw sequences from the NYU RGB-D
dataset1, in which every clip is composed of a long image
sequence of a moving camera, possibly including moving

1http://cs.nyu.edu/∼silberman/datasets/nyu depth v2.html



(a) Training: RGB – abledo – shading – boundaries

(b) Example contour detection
Figure 2. Surface contours estimated from albedo and shading.
(a) A few frames from our contour training dataset: RGB, albedo,
shading, and boundaries from left to right. (b) An RGB image and
its surface contours predicted by our method modified from [8].

objects, and illumination variation. Note that this is differ-
ent from the typical NYU RGB-D dataset [20], which is
composed of single frames. For each video frame, we de-
compose it into albedo and shading

It(x) = At(x) · St(x), (1)

where t is frame index, It is an RGB image, At is an albedo
image, St is a shading image, and x is pixel position. Note,
importantly, that we do not use the depth for estimating the
albedo and shading. Our goal is to be able to extract intrin-
sic images, including depth, directly for video observations.

In order to extract temporally coherent albedo and shad-
ing from challenging RGB videos, we chose the intrinsic
video method in [13], since this method does make any
assumptions about the scenes if the videos have enough
motion throughout the sequences; for example, they can
include independently moving objects. The shading se-
quences from this method convey piecewise smooth struc-
ture, whose discontinuities overall align with the true shape
of the scenes. We estimated optical flow from each of the
sequences using the method of [17]. We tried other state-
of-the-art flow algorithms [23, 26, 27], but this consistently
performed the best on this database. We use the same meth-
ods to compute albedo and shading from a query video.

Surface contours. Shading provides a good cue about the
location of surface boundaries, but shading boundaries are
easily affected by illumination variation and thus not per-
fectly reliable. In [8] it is shown that surface contours can
be predicted better by combining pixel values with extra
information from known depth maps. We find that a sim-
ilar approach works well by substituting the extra depth
channel with albedo and shading. Specifically we retrain

their decision forests on ground truth combinations of RGB,
albedo, shading, and corresponding boundaries using the
Sintel dataset [5]. See Fig. 2 and Section 6 in Sup. Mat.

Sparse depth and segmentation. We compute sparse SfM
using VisualSFM2, which implements multicore bundle ad-
justment [28]. We apply this to the test sequences to com-
pute the depth at sparse points as well as camera poses. We
then densify these as described in Section 1 of Sup. Mat.
using segmentation volumes extracted by [9]. This provides
semi-dense, metric, depth that acts as a prior and improves
accuracy.

3.2. Modified Depth Transfer

We describe details of the modifications made to the
original Depth Transfer method, then show and reason
about the improvement over the original method.

Candidate frame selection. For each video sequence, the
system computes a set of gist descriptors that are composed
of the gist of each video frame (image gist), gist of each
flow field (flow gist), and gist of the full video sequence
(video gist). We further decompose the image and video gist
using albedo and shading. According to the gist numbers,
the system first chooses the 7 best matching videos and then
the best matching frame from each of the videos.

The original matching score [12] between a frame in the
query video q and a frame of a clip c in the database is
defined as

wi‖G(Iq)−G(Ic))‖2 + wf‖G(Fq)−G(Fc)‖2, (2)

where wi and wf are blending weights (wi = wf = 1
2 ), and

G is a gist operator [22], Iq is a query video frame whose
optical flow field is Fq, Ic is a video frame to compare with,
whose flow field is Fc. Our matching score is modified as

wa‖G(Aq)−G(Ac)‖2 + ws‖G(Sq)−G(Sc)‖2

+wi‖G(Iq)−G(Ic))‖2 + wf‖G(Fq)−G(Fc)‖2, (3)

where wa, ws, wi and wf are blending weights given as
wa = ws = wi = wf = 1

4 , Aq and Sq are albedo and
shading of a query video frame, respectively, and Ac and
Sc are those of a frame to compare with.

The video gist is defined as the gist of a median image
over all video frames. We further define the albedo video
gist and the shading video gist as the gist of a median albedo
image and that of a median shading image over the video,
respectively. For video clip selection, we replace the origi-
nal video gist with a blending of the video gist, albedo video
gist, and shading video gist with even factors.

Figure 3 shows that our modified candidate selection per-
forms better in that it chooses more similar looking frames.

2http://ccwu.me/vsfm/



Query

(a)

(b)

(c)

(d)

Figure 3. Candidate frame selection for a frame of the video in Fig. 1. The system chooses 7 candidate frames from the database. (a) shows
candidates selected by pixel values and flow (original method) and (b) shows the corresponding depth maps. (c) shows candidates selected
by pixels, albedo, shading, and flow, and (d) shows the corresponding depth maps. In (a) and (c), the images are sorted according to their
matching scores in a descending order; the leftmost image is the best match for the query video (black pixels are unreliable measurements).

Image gist descriptors extracted from pixel values can give
implausible matches if the scene of the query video looks
very different from any of the training video clips. If two
clips capture the same scene but the illumination is differ-
ent, the image-based gist can get fooled and, in this case,
albedo gist may perform better. If two clips are from two
different scenes, but their color distributions are somewhat
similar, then only the shape difference gives us a cue to
choose the right one. In this case, shading gist may per-
form better. Thus shading and albedo gist compliment each
other.

Warping candidate depth. Matching using SIFT flow [18]
is a key component of Depth Transfer, which performs per-
pixel warping between pixels with similar appearance. As
in [12], we fill holes in the candidate depth map using
spatio-temporal interpolation, and warp it to the query video
frame using the SIFT flow. Our SIFT flow is computed us-
ing the albedo of the query image and that of the candidate
frame instead of RGB values. Figure 4 compares warped
depth maps from the same query, where (a) is from candi-
dates using pixels and flow, and (b) is from candidates using
extra albedo and shading information. We can see that our
fused depth conveys more structural information.

Regularization. The warping process in the previous step
considers neither spatial smoothness nor temporal coher-
ence in the warped depth values, thus the warped depth is
inconsistent and noisy. The final step is very important to
enhance consistency in the warped depth values. The orig-
inal method performs spatio-temporal regularization on the
intensity and gradients of warped depth values based on im-

(a)

(b)

(c) Baseline: fusing (a) (d) Ours: fusing (b)

(e)
case rel log10 RMS

Fused depth baseline 1.243 0.261 2.312
Fused depth ours 0.960 0.228 1.905

Figure 4. Warped depth maps of the candidates shown in Fig. 3.
Known depth maps of 7 candidates are warped onto a query video
frame using SIFT flow. (a),(b) Candidates in Fig. 3(b) and (d)
warped to the query frame, respectively. (c),(d) Median of (a) and
(b) over the candidates, respectively. Our fused map in (d) bet-
ter captures the overall shape of the table compared to that in (c).
(e) Errors of the fused depth videos (30 frames) compared with
ground truth (see Section 4 for the error measures).

age boundaries and optical flow. It minimizes

argmin
Dt

∑
t

Edata(Dt, C
(1...K)
t ) + γEprior(Dt,Pt) +

αEspat(Dt) + βEtemp(Dt, Dt+1,ut), (4)

where Dt is an unknown depth map of the query frame at
t that we wish to estimate. Edata is the data term that takes



(a) sxt [12] (b) syt [12] (c) sxt (d) syt
Figure 5. Spatial weight functions. (a),(b) Original functions
along with horizontal and vertical gradients of pixel values, re-
spectively. (c),(d) Ours from the predicted contours in Fig. 2.

(a) (b)

(c) (d)
Figure 6. Prior. (a) Depth prior as an average of all depth maps
in the training data. (b) SfM points projected into the image (here
simply visualizing projected pixel locations). (c) Out proxy depth
map using the sparse depth in (b) and segmentation from [9]. (d)
Ground truth. The original method simply replicates the same (a)
throughout the video. Our prior is dense and metrically more ac-
curate, and reflects depth variation over time.

all K candidate depth maps C(1...K)
t for the query frame at

t. Eprior is a soft constraint to guide the estimation using a
prior depth map, Pt, at t. Espat is a spatial smoothness term
that uses image boundaries. Etemp is a temporal coherence
term that uses optical flow, ut,t+1, between t and t + 1.
We modify Eprior, Espat, and Etemp as discussed below. The
default settings of the weights are α = 10, β = 100, and
γ = 0.5, while we use α = 100, β = 100, and γ = 10. We
define a sigmoid function here that is used below

sig(x, ν, µ) =
(
1 + eν·(µ−x)

)−1
, (5)

where ν and µ are constants that shape of the soft threshold.
See Sup. Mat. for the original forms of the terms above.

Data term. We keep this term the same as in [12]. This
term measures how close the inferred depth map Dt is to
each of the warped candidate depth maps. The weight is
fixed to 1 relative to other weights α, β, and γ in Eq. (4).

Spatial smoothness. Our spatial term is defined as

Espat(Dt) =
∑
x

sxt (x)ρ(∇xDt(x)) + syt (x)ρ(∇yDt(x)),

where ∇xDt and ∇yDt are horizontal and vertical depth
gradients, respectively, ρ(x) =

√
x2 + ε2, and ε = 0.01.

The weighting functions sxt and syt control the smoothness
of the estimated depth map. It allows higher smoothing in-
fluence where contours do not arise in the image, so that
the discontinuities are kept where the contours arise. In the
original method these spatial weights are determined by im-
age boundaries, but they may come from surface markings
rather than surface boundaries.

In order to predict contours that better obey true surface
boundaries, we modify a contour detector in [8] so as to
combine physical and structural information from albedo
and shading. We find that our contours better correspond
to surface boundaries than those from [8], thus improve the
fine quality of the estimated depth maps. See Sections 6
and 7 in Sup. Mat. for more details. We define new spa-
tial weights that encourage depth discontinuities along the
relevant surface boundaries by extracting vertical and hori-
zontal contours from the raw contour map δt as

sxt (x) = 1− sig(Gv(sig(δt(x), 50, 0.3), σ), 50, 0.3)
syt (x) = 1− sig(Gh(sig(δt(x), 50, 0.3), σ), 50, 0.3), (6)

where Gv and Gh are 1D vertical and horizontal Gaussian
filters (σ = 2), respectively. Figure 5 illustrates the weight
functions.

Prior. Our prior term minimizes the difference between
the estimated depth map and the prior depth map Pt. The
original method simply replicates an average depth map
over the database over time, while we compute more accu-
rate and temporally varying proxy depth maps using sparse
points from SfM estimation.

Eprior(Dt,Pt) =
∑
x

spxy
t (x) · ρ(a ·Dt(x)− Pt(x)), (7)

where Pt is our proxy depth map and spxy
t is a binary mask

that is set to 1 if Pt is valid at that pixel, 0 otherwise. ρ(x) is
the same as above and a is an unknown scale variable (see
below). Since sparse points only guarantee their accuracy
at a few projected pixels, they do not provide a sufficient
prior. Simple extrapolation provided unsatisfactory results
when the points were not well spread over the image. In-
stead we find that a recent video segmentation method [9]
provides good over-segmentation volumes to densify these
sparse depth values reasonably. See Fig. 6 and our proxy
map (c), which provides a crude approximation to the solu-
tion.

Temporal coherence. This term encourages temporal
coherence of the estimated depth maps by using the optical
flow and the camera motion of the query video. In the orig-
inal method, depth is considered to be strictly coherent over
the correspondences. This assumption is violated when the
camera moves and can be particularly bad with large mo-



tions. Thus we incorporate camera poses estimated from
SfM into this term.

We define our temporal term as

Etemp(Dt, Dt+1,ut) =
∑
x

stemp
t (x) ·

ρ(St+1(x+ ut(x), Rt+1, θ) ·Dt+1(x+ ut(x)) · a
−St(x, Rt, θ) ·Dt(x) · a+ ot(ct, ct+1)), (8)

where ut is optical flow from t to t+1, and a is an unknown
global scale factor to compensate for the scale ambiguity of
the SfM output. stemp

t (x) is a weight function, measured by
the following flow confidence to down weight occluded and
dis-occluded pixels

stemp
t (x) = 1− sig (|G(Jt(x), σ)| , 1000, 0.005) , (9)

where Jt(x) = It+1(x+ ut(x))− It(x) , G is a Gaussian
filter (σ = 1), and It and It+1 are the query frames at t and
t+ 1, respectively. ρ(x) is the same as above.

The motivation of Eq. (8) is that two corresponding pix-
els, x at t and x + ut(x) at t + 1, should project to the
same 3D position using St, St+1 and ot derived from cam-
era poses at t and t+ 1:

St(x, Rt, θ) = R(3,:)t ·

(x− px)/fx
(y − py)/fy

1

 (10)

ot(ct, ct+1) = c(3)t+1 − c(3)t, (11)

where x = (x, y), [Rt|ct] is an inverse extrinsic ma-
trix (from camera to world) at t for which Rt is a 3x3
rotation matrix and ct is a 3D camera position, and
θ = (fx, fy, px, py) represents the intrinsic parameters for
which fx and fy are focal lengths and (px, py) is a principal
point. Subscripts (3, :) and (3) indicate the third row of the
matrix and the third component of the vector, respectively.

See Section 4 in Sup. Mat. for optimization details.

4. Experiments
We tested our method on static scenes captured with

a significantly moving camera and non-rigid scenes with
camera motion. Please watch our full supplementary
video on the project homepage3. Qualitatively our method
produces temporally coherent dense depth maps preserv-
ing strong surface boundaries that are metrically accurate.
From the raw NYU RGB-D data, we take 223 sequences
(scenes) corresponding to 31 semantically different indoor
environments. We split each sequence into up to 4 non-
overlapping sub-sequences (clips), each 30 frames long. We
evaluate on these clips but use the full sequences for SfM.

3https://ps.is.tue.mpg.de/research_projects/
intrinsic-depth

We compare our results with those from the orig-
inal Depth Transfer method [12] and the fully-metric
method [32] that only relies on SfM and multi-
view stereo, and the single image method [24, 25]
(http://make3d.cs.cornell.edu). We adopt error measures from
[12], including a relative (rel) error |D−D

∗|
D∗ , log10 (log10)

error | log10(D) − log10(D
∗)|, and root mean squared

(RMS) error
√∑N

i=1 (Di −D∗i )
2
/N , where D and D∗

are estimated and ground truth depth maps, respectively, i
is pixel index, N is the number of pixels in an image. All
estimation is processed at the native resolution.

We measure errors after normalizing the estimated depth
video (0-truncated negative values if any) and ground truth
depth video separately; each video is scaled so that its min-
imum and maximum values, over all frames, stay within
[0.1, 10] meters (roughly the NYU RGB-D depth range).
Note that we exclude the known invalid regions in the
ground truth depth when normalizing it and when comput-
ing errors.

Test Cases from NYU RGB-D. These test cases are cho-
sen from our database derived from raw NYU RGB-D data.
We randomly take 10 test scenes (30 frames for each scene;
resolution 561×427) at each time while leaving out the rest
as a training set, and repeat this 5 times to measure average
errors. Here we use VisualSFM [28] (http://ccwu.me/vsfm/)
to estimate SfM cues. Figure 1 is chosen from these test
cases. More examples are in Sup. Mat.

Table 1 shows that our depth estimated without SfM cues
is already better than depth from [12], and our depth is also
better than depth from ours with contours from [8]. Table 2
shows that our warping step using albedo gist and shading
gist works better than only using RGB gist. Table 3 shows
that our depth estimates are more accurate than sparse depth
from SfM at those points where SfM estimates are available.

Test Cases from SUN3D. We randomly take 50 scenes
from the SUN3D dataset [29], which is composed of RGB-
D videos and pre-computed SfM data. Each scene is com-
pose of a 30-frame clip whose resolution is 640×480. Note
that the SfM method to generate this database uses mea-
sured depth maps thus projected depth values from its SfM
points are very accurate. Figures 7-12 in Sup. Mat. illus-
trate representative examples from these test cases.

In Table 4, we show that our method without SfM is
consistently better than the baseline, while our full method,
with SfM cues, is significantly better. Our full method also
performs better than ours with contours from [8]. Table 5
shows that our warping step works better than the original.

Quantitative evaluation against [32] on the subsets of
both test cases above is addressed in Section 5 of Sup. Mat.;
[32] performs best on outdoor scenes but we found that it
works poorly on indoor scenes for which ours does best.

Non-rigid Scenes with Camera Motion. We show that our



method works reasonably on non-rigid scenes with camera
motion, where standard SfM methods have trouble. We take
6 such scenes (17 clips, 30 frames each) from the raw NYU
RGB-D data, and evaluate them in Table 6. One of those is
presented in Fig. 7. See the caption for descriptions.

method rel log10 RMS
Baseline [12] 1.820 0.309 3.107
Ours w/o SfM 1.468 0.287 2.887
Ours w/ contours from [8] 0.720 0.235 2.102
Our full method 0.718 0.232 2.098

Table 1. Estimated depth maps for NYU RGB-D test cases.
method rel log10 RMS
Warped depth of [12] 1.414 0.271 2.384
Our warped depth 1.311 0.271 2.367

Table 2. Warped depth for NYU-D test cases.
method rel log10 RMS
SfM depth 1.028 0.252 2.068
Our depth at SfM points 0.685 0.181 1.581

Table 3. SfM cues for NYU RGB-D test cases. We evaluate at the
points with SfM estimates.

method rel log10 RMS
Baseline [12] 2.003 0.333 3.593
Ours w/o SfM 1.406 0.291 3.071
Ours w/ contours from [8] 0.426 0.125 1.264
Our full method 0.398 0.119 1.215

Table 4. Estimated depth for SUN3D test cases.
method rel log10 RMS
Warped depth of [12] 1.315 0.272 2.605
Our warped depth 1.207 0.270 2.555

Table 5. Warped depth for SUN3D test cases.
method rel log10 RMS
Baseline [12] 1.496 0.250 2.444
Baseline [12]* 1.830 0.316 2.853
Baseline [12]† 1.849 0.302 2.890
Fully-metric method [32] 1.517 1.139 4.788
Our full method 0.875 0.244 2.208

SfM depth 1.025 0.269 1.951
Our depth at SfM points 0.766 0.216 1.666

Table 6. Estimated depth for non-rigid scenes with moving cam-
eras. *: with basic motion segmentation. †: with motion segmen-
tation using homographies. In the last two rows, we evaluate at the
points with SfM estimates.

5. Conclusions and Future Work
We have demonstrated how the computation of sev-

eral intrinsic images (depth, shading, albedo, flow, and
contours) can work together synergistically. Shading and
albedo can help the estimation of example-based depth es-
timation. Combining RGB, shading, and albedo can pro-
duce better surface contour detection. Flow helps link in-
formation in time providing consistency of albedo, shad-
ing, depth, and contours. Together these insights allow us

(a) ... ...

(b) ... ...

(c) ... ...

(d) ... ...

(e) ... ...

(f) ... ...

(g) ... ...

Figure 7. Living room scene with a walking person and cam-
era motion. (a) Input RGB sequence. (b) SfM point projections.
Note that SfM points are missing at most regions. (c) Our method
estimates depth overall well regardless of missing SfM cues. (d)
Depth from [12] with motion segmentation heuristics using homo-
graphies. (e) [32] has trouble due to unmodeled non-rigidity. (f)
[24, 25] fails to capture the moving person and yields inconsistent
depth across time. (g) Ground truth depth.

to improve on Depth Transfer [12]. Additionally we show
how integrating sparse SfM with an example-based depth
method improves metric accuracy and how it can be seen as
a form of densification. We demonstrate this visually and
quantitatively on the NYU RGB-D and SUN3D datasets.

We see this a modest step towards a more integrated
treatment of intrinsic images as laid out by Barrow and
Tenenbaum. In particular, depth, surface normals, and shad-
ing are tightly coupled to image appearance, and a more in-
tegrated optimization of these all together should yield finer
surface details and increased robustness.

Acknowledgments. We thank J. Anning for technical
support and voice recording, J. Wulff for his help regard-
ing the Sintel dataset, and A. O. Ulusoy for useful advice.



References
[1] J. T. Barron and J. Malik. Intrinsic scene properties from a

single RGB-D image. In Proc. IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 17–24,
2013. 3

[2] H. G. Barrow and J. M. Tenenbaum. Recovering intrinsic
scene characteristics from images. In Computer Vision Sys-
tems, pages 3–26, 1978. 1, 3

[3] D. Batra and A. Saxena. Learning the right model: Ef-
ficient max-margin learning in laplacian CRFs. In Proc.
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 2136–2143, 2012. 3

[4] N. Bonneel, D. Sun, K. Sunkavalli, S. Paris, and H. Pfister.
Reflectance and illumination video editing using fast user-
guided intrinsic decomposition. Technical Report TR-02-14,
Harvard University, February 2014. 3

[5] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A
naturalistic open source movie for optical flow evaluation.
In Proc. European Conference on Computer Vision (ECCV),
volume 7577 of Part IV. LNCS, pages 611–625, 2012. 2, 4

[6] Q. Chen and V. Koltun. A simple model for intrinsic im-
age decomposition with depth cues. In Proc. IEEE Interna-
tional Conference on Computer Vision (ICCV), pages 241–
248, 2013. 3

[7] P. Didyk, T. Ritschel, E. Eisemann, K. Myszkowski, and H.-
P. Seidel. A perceptual model for disparity. ACM Trans.
Graph., 30(4), 2011. 3

[8] P. Dollár and C. L. Zitnick. Fast edge detection using
structured forests. IEEE Trans. Pattern Anal. Mach. Intell.,
37(8):1558–1570, 2015. 2, 4, 6, 7, 8

[9] M. Grundmann, V. Kwatra, M. Han, and I. Essa. Efficient
hierarchical graph based video segmentation. Proc. IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2141–2148, 2010. 2, 4, 6

[10] T. Hassner and R. Basri. Example based 3D reconstruction
from single 2D images. In Beyond Patches, page 15, 2006. 3

[11] J. Jeon, S. Cho, X. Tong, and S. Lee. Intrinsic image de-
composition using structure-texture separation and surface
normals. In Proc. European Conference on Computer Vision
(ECCV), volume 8695 of LNCS, pages 218–233, 2014. 3

[12] K. Karsch, C. Liu, and S. B. Kang. Depthtransfer: Depth
extraction from video using non-parametric sampling. IEEE
Trans. Pattern Anal. Mach. Intell., 36(11):2144–2158, 2014.
1, 2, 3, 4, 5, 6, 7, 8

[13] N. Kong, P. V. Gehler, and M. J. Black. Intrinsic video.
In Proc. European Conference on Computer Vision (ECCV),
volume 8690 of LNCS, pages 360–375, Sept. 2014. 1, 2, 3, 4

[14] J. Konrad, M. Wang, and P. Ishwar. 2D-to-3D image conver-
sion by learning depth from examples. In CVPR Workshops,
pages 16–22, 2012. 3

[15] C. Li, A. Kowdle, A. Saxena, and T. Chen. Towards holistic
scene understanding: Feedback enabled cascaded classifica-
tion models. CoRR, abs/1110.5102, 2011. 3

[16] B. Liu, S. Gould, and D. Koller. Single image depth estima-
tion from predicted semantic labels. In Proc. IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 1253–1260, 2010. 3

[17] C. Liu. Beyond pixels: Exploring new representations and
applications for motion analysis. Ph.D. dissertation, MIT,
2009. 4

[18] C. Liu, J. Yuen, and A. Torralba. SIFT flow: Dense corre-
spondence across scenes and its applications. IEEE Trans.
Pattern Anal. Mach. Intell., 33(5):978–994, 2011. 1, 3, 5

[19] F. Liu, C. Shen, and G. Lin. Deep convolutional neural
fields for depth estimation from a single image. In Proc.
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2015. 3

[20] P. K. Nathan Silberman, Derek Hoiem and R. Fergus. In-
door segmentation and support inference from rgbd images.
In Proc. European Conference on Computer Vision (ECCV),
volume 7576 of Part V. LNCS, pages 746–760, 2012. 4

[21] R. Newcombe, S. Lovegrove, and A. Davison. DTAM:
Dense tracking and mapping in real-time. In Proc. IEEE
International Conference on Computer Vision (ICCV), pages
2320–2327, 2011. 3

[22] A. Oliva and A. Torralba. Modeling the shape of the scene: A
holistic representation of the spatial envelope. Int. J. Comput.
Vis., 42(3):145–175, May 2001. 1, 4

[23] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid.
EpicFlow: Edge-Preserving Interpolation of Correspon-
dences for Optical Flow. In Proc. IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2015. 4

[24] A. Saxena, S. H. Chung, and A. Y. Ng. 3-D depth reconstruc-
tion from a single still image. Int. J. Comput. Vis., 76(1):53–
69, Jan. 2008. 2, 3, 7, 8

[25] A. Saxena, M. Sun, and A. Y. Ng. Make3D: Learning 3D
scene structure from a single still image. IEEE Trans. Pattern
Anal. Mach. Intell., 31(5):824–840, May 2009. 2, 3, 7, 8

[26] D. Sun, S. Roth, and M. J. Black. A quantitative analysis of
current practices in optical flow estimation and the principles
behind them. Int. J. Comput. Vis., 106(2):115–137, 2014. 4

[27] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid.
Deepflow: Large displacement optical flow with deep match-
ing. In Proc. IEEE International Conference on Computer
Vision (ICCV), pages 1385–1392, 2013. 4

[28] C. Wu, S. Agarwal, B. Curless, and S. M. Seitz. Multicore
bundle adjustment. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3057–3064,
2011. 2, 3, 4, 7

[29] J. Xiao, A. Owens, and A. Torralba. SUN3D: A database
of big spaces reconstructed using sfM and object labels. In
Proc. IEEE International Conference on Computer Vision
(ICCV), pages 1625–1632, 2013. 7

[30] G. Ye, E. Garces, Y. liu, Q. Dai, and D. Gutierrez. Intrinsic
video and applications. ACM Trans. Graph., 33(4), 2014. 3

[31] G. Zhang, J. Jia, W. Hua, and H. Bao. Robust bilayer
segmentation and motion/depth estimation with a handheld
camera. IEEE Trans. Pattern Anal. Mach. Intell., 33(3):603–
617, 2011. 3

[32] G. F. Zhang, J. Y. Jia, T. T. Wong, and H. J. Bao. Consistent
depth maps recovery from a video sequence. IEEE Trans.
Pattern Anal. Mach. Intell., 31(6):974–988, June 2009. 2, 3,
7, 8


